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1. Introduction

Field theories on noncommuting spacetime,

[xµ, xν ] = i θµν , (1.1)

receive a great deal of attention, not least because they arise naturally in a particular,

Seiberg-Witten, limit [1] of string theories, see [2 – 4] for reviews. The corresponding ef-

fective field theories can be derived from their commutative cousins by simply replacing

products of fields in the Lagrangian by Weyl-Moyal star products,1

(φ ∗ ϕ)(x) ≡ φ(x) e
i
2
θµν
←
∂µ
→
∂ν ϕ(x) . (1.2)

The parameter θµν then appears in the vertices of perturbation theory, and, since it has

dimensions of mass−2, defines a second mass scale in the theory (besides the string scale,

Ms), the so-called noncommutativity scale, MNC. A natural question to ask is what is the

allowed range of MNC?

In this paper we shall consider the above question in as general a manner as possible

using UV cutoffs to mimic the effects of the UV complete theory. As we go along we will

compare our results with the string realisation of noncommutative field theory, namely

strings in background magnetic (B) fields, which provide a nice, divergence-free framework

in which to examine noncommutativity. Despite this obvious attraction of strings, most of

the phenomenology depends on very general properties of any UV completion (for example

1In the following, we will not consider a more indirect alternative approach to noncommutativity which

uses the Seiberg-Witten map. For comments on the relation between the two approaches see [5 – 7].
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that they should be divergence free, continuous and so on) and we will see that they are

well modelled by UV cutoffs.

Before proceeding, let us try to make our question a little more precise. We can

estimate the possible range of MNC by invoking the notion of naturalness. Considering

the specific example of string theory for a moment, pure noncommutative field theory is

realised as a special limit of open strings in a background Bµν field, in which closed string

(i.e. gravitational) modes are decoupled, leaving only open string interactions. There is

no potential for B which as far as the string theory is concerned is just a rather mild

background, so in principle θµν could be anything. Nevertheless it seems reasonable to

suppose that, if nonperturbative string physics fixes the value of B to be nonzero, it does

so with vacuum expectation values (VEVs) of order one in string units.2 A natural scale for

θ would in that case be θ ∼ M−2
s . Depending on the scenario in question that still leaves

open a huge possible range: M−2
P < θ < M−2

W , with the Planck scale MP and the weak

scale MW , the latter arising, for example, in large extra dimension scenarios. What about

other possible UV completions? One role of any UV completion would almost certainly be

to describe quantum gravity. As θµν is intimately involved in the properties of spacetime,

a mild assumption is that its “natural” value would inevitably be determined by the only

mass scale in quantum gravity. Then one would assume that typically θ ∼ M−2
P . As the

string theory example shows, the natural range of θ could be beefed-up by, for example,

large volumes of extra compact dimensions, but it is difficult to see how much smaller but

nonzero values could arise very easily. If there is noncommutativity, therefore, it is natural

that θ > M−2
P , or equivalently, MNC < MP.

So our slightly refined question is, can noncommutativity at energy scales as high as

MP lead to observable effects? Surprisingly, the answer is yes. As we shall see in this

paper, current observations and experiments already severely restrict the range of allowed

noncommutativity scales. The reason for this lies in two interesting properties of noncom-

mutative field theories that need to be taken into account in the construction of a viable

noncommutative standard model extension [8, 9]. First, there are strong constraints on

both the dynamics and the field content. Only U(N) gauge groups with matter fields in fun-

damental, bifundamental and adjoint representations are allowed [10 – 14] (for U(1) gauge

groups charges are restricted to ±1, 0 [15]). Second, as we will detail below, universality

does not hold and ultraviolet/infrared (UV/IR) mixing occurs [16 – 19].

In four continuous dimensions (i.e. without any quantum gravity, high energy cutoff or

UV completion), noncommutative models of this type seem to conflict badly with experi-

ment, as outlined in ref. [6]. Either there are superfluous massless degrees of freedom or a

nonvanishing (and Lorentz symmetry violating) mass term for the photon. Since neither

is observed this presents a challenge for any attempt to construct a realistic extension of

the Standard Model based on a noncommutative space time.

However, the result of ref. [6] was based on the assumption that the gauge fields

live on a continuous four dimensional space time. In particular, it assumed that the four

2Note that MNCÀMP does not imply large VEVs for the B fields. In general, since θ∼ 1
const+B

B 1
const−B

(Lorentz indizes suppressed) vanishing B fields imply vanishing θ and therefore MNC →∞.
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dimensional noncommutative gauge theory is valid up to arbitrarily large momentum scales.

But if noncommutative gauge theories are realised as low energy effective field theories of

some underlying theory such as string theory, this assumption almost certainly requires

modification. It is likely that noncommutative field theory gets spectacularly modified at

energy scales approaching Ms. One possible avenue to explore then is the possible effects

of “stringy features” such as additional compactified space dimensions. These make the

theory effectively higher dimensional at large momentum scales which can be thought of as

an intermediate stage towards the string theory. Thanks to UV/IR mixing, the effects of

extra dimensions can be transmitted to the IR in the trace-U(1) photon [20]. Such effects

can be analysed in a field theoretic framework, and one may search for helpful properties

such as the amelioration of constraints on the noncommutativity scale due to, for example,

power law decoupling of the trace-U(1) photon in the IR [20].

Despite the obvious attraction of the field-theoretical approach in [6, 20], the drawback

is that it is unable to describe effects arising from physics above Ms. This regime is

described by the UV completion of the theory, whatever that may be. Normally of course

we would not have to worry about such a thing because of universality: the influence of

physics above a cutoff ΛUV on the physics at a momentum scale k is suppressed by powers of

k/ΛUV. If universality holds, a modification at very high momentum scales cannot modify

the physics at much smaller momentum scales. However, although ordinary renormalizable

commutative theories fall into this category, noncommutative theories do not, because of

UV/IR mixing, [16, 17] and [18, 19].

The phenomenon of UV/IR mixing can be understood from a simple argument. To

account for the effects of noncommutativity, we are instructed to replace ordinary products

in our field theory by Weyl-Moyal star products (1.2). This results in factors of exp(ik̃ · p)
in the (non-planar) loop integrals [21], where k̃µ = θµνkν . Consider a typical loop integral

with massless particles in the loop,

∫
d4p

(2π)4

1

p2(p+ k)2
exp(ik̃ · p). (1.3)

The oscillating phase regularises the integral for large values of momentum p, and the

integral is dominated by regions where k̃ · p ∼ 1, or |p| ∼ M 2
NC/|k|. This value of |p| is

large when the external momentum k is small. The large momenta in the loop p ∼M 2
NC/k

indeed influence the physics at small external momentum k. Now consider the effect of

heavy particles of mass M in the loop. When |k| À M 2
NC/|p|, the loop integral is killed

when |p| ¿M , and (broadly speaking) we may neglect the contribution of heavy particles.

But when |k| ¿ M 2
NC/|p| the phase is irrelevant and the integral receives contributions

from large values of p, |p| > M . In other words as we lower our external momentum k, we

access ever heavier modes in the loop.

In general, therefore, a modification of the noncommutative theory above a UV scale

ΛUV will indeed influence physics below an infrared scale ΛIR ∼ M2
NC/ΛUV, as we will

see in detail in section 2. The problematic mass term for the photon is an effect of this

UV/IR mixing. Hence, it seems plausible that this problem can be treated with a UV

modification of the theory. As we already stated, our aim here is to determine some general
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phenomenological features of noncommutative models and test them against experimental

constraints. At first sight this looks like a hopeless task, since constraints corresponding to

the lowest energy scales (for example photon masses) are influenced by the highest mass

modes in the loop integrals. It looks as though sooner or later we will run up against the

UV completion of the theory, at which point all hopes of generality will be lost. However,

guided by recent work in ref. [22], we can determine some generic properties for a large

class of theories (cf. section 4). Indeed with fairly mild assumptions (which are true for

string theory), the phenomenological effects of the UV completion, such as for example the

restoration of normal Wilsonian behaviour in the deep IR, are well modelled by a simple

UV cutoff.

As we have already mentioned, there is an important difference between the set-up we

use in the present paper and that of refs. [8, 6, 20] in the way we interpret the underlying

noncommutative gauge theory from the perspective of standard particle physics at low

energies. The UV/IR mixing effects illustrated by the integral (1.3) occur only in the

trace-U(1) factors of the U(N) gauge group(s); the SU(N) degrees of freedom are free

from the UV/IR mixing. The results of the present paper show, that, in presence of a

fundamental cutoff ΛUV, the mixing of those U(1) gauge fields (affected by the UV/IR

mixing) with the photon does not cause severe problems such as generating a polarisation

dependent photon mass. This differs from the approach in refs. [8, 6, 20], where ΛUV =∞.

As will be explained in the next section, through the UV/IR mixing, an ultimate UV

cutoff induces an infrared scale ΛIR ∼ M2
NC/ΛUV. At energy scales below ΛIR, physics

of all degrees of freedom is governed by an ordinary commutative low-energy effective

theory and the effects of the UV/IR mixing are very small. We now place the Standard

Model at energies below ΛIR. This is different from the set-up in refs. [8, 6, 20] which

in the language of this paper amounts to ΛUV = ∞ and ΛIR = 0, thus implying that

the Standard Model was embedded into a noncommutative theory at energies ESM in the

opposite region: ΛIR < ESM < MNC < ΛUV.

We will see in section 3 that the problem of the unwanted mass term for the trace-U(1)

photon caused by the UV/IR mixing [6] softens considerably at energies below ΛIR. Instead

of a mass term one gets, at low momentum scales, vacuum birefringence, i.e. a polarisation

dependent propagation speed. If MNC is close enough to the cutoff scale ΛUV ∼ MP, this

vacuum birefringence can be pushed beyond the current experimental limits. Thereby,

a window opens for MNC where noncommutativity is still allowed. As experimental and

observational sensitivity is likely to improve in the near future, this provides an interesting

probe for scales MNC very close to the Planck scale.

In the following we will concentrate on the case of a pure U(1) noncommutative gauge

theory. A pure U(1) gauge theory behaves qualitatively like the trace-U(1) factors of U(N)

theories and captures all essential features of the UV/IR mixing.3

The paper is organized as follows. In section 2, we discuss the essential features of

UV/IR mixing and the running gauge coupling in the presence of an ultimate UV cutoff.

3We recall that the noncommutative U(1) is an interacting theory, which is asymptotically free in the

UV. Its commutative counterpart is of course a free theory.
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In the following section 3, we demonstrate how this leads to vacuum birefringence. We

discuss experimental and observational bounds on this effect and the resulting constraints

on the scale of noncommutativity MNC. The validity of using a fundamental UV cutoff

to simulate the UV completion is outlined in section 4, where we make a comparison with

string theory, and use it as evidence in support of our claim that the phenomenology

outlined here is very generic. Finally, we conclude in section 5.

2. UV/IR mixing in presence of a finite UV cutoff

In noncommutative gauge theories, Lorentz symmetry is explicitly broken since the matrix

θ on the right hand side of (1.1) is a constant matrix to be specified in a fixed reference

frame. This allows an additional transverse (gauge invariant) structure that might be

present in the polarisation tensor,4

Πµν = Π1(k2, k̃2)
(
k2gµν − kµkν

)
+ Π2(k2, k̃2)

k̃µk̃ν

k̃2
with k̃µ = θµνkν . (2.1)

The Π1 part multiplies the ordinary transverse structure and is related to the running

gauge coupling via [18]
1

g2(k, k̃)
=

1

g2
0

+ Π1(k, k̃). (2.2)

Π2 is a new Lorentz symmetry violating structure [16, 17]. In theories with exact super-

symmetry (SUSY) it is absent [17, 18]. Its size is therefore related to the SUSY breaking

scale [5].

Performing a one loop calculation for the polarisation tensor one obtains [18, 5],

Πµν(k) = Πµν(k, l = 0)−Πµν(k, l = k̃), (2.3)

with

Πµν(k, l) = 2
∑

j

αj

∫
d4q

(2π)4

{
d(j)

[
(2q + k)µ(2q + k)ν

(q2 +m2
j)((q + k)2 +m2

j)
− 2δµν
q2 +m2

j

]
(2.4)

+4C(j)
k2δµν − kµkν

(q2 +m2
j)((q + k)2 +m2

j)

}
exp (iq · l) ,

where the coefficients αj , d(j) and C(j) are given in table 1.

As we already stated in the introduction we want to model the UV finiteness of an

underlying theory by cutting off all fluctuations above a UV scale ΛUV. One suitable way

to do this is by introducing a factor of exp(− 1
Λ2

UVt
2 ) in the integral over the Schwinger time

4Here, and in the following we will concentrate on the case of a noncommutative U(1) gauge group. The

generalisation to U(N) gauge groups is straightforward. All statements remain valid, when applied to the

trace-U(1) part of the gauge group. The SU(N) part is unaffected by noncommutativity, independent of

the presence of a cutoff.
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j= scalar Weyl fermion gauge boson ghost

αj -1 1
2 −1

2 1

Cj 0 1
2 2 0

dj 1 2 4 1

Table 1: Coefficients appearing in the evaluation of the loop diagrams.

t. One obtains (s. [5]),

Πµν(k) =
1

4π2

(
k2δµν − kµkν

)

×
∑

j

αj

∫ 1

0
dx
[
4C(j) − (1− 2x)2d(j)

]
[
K0

(√
Aj

ΛUV

)
−K0

(√
Aj

Λeff

)]

+
1

4π2
k̃µk̃ν Λ2

eff

∑

j

αjd(j)

∫ 1

0
dxAjK2

(√
Aj

Λeff

)

+δµν [ gauge non-invariant term ] , (2.5)

where

Aj = m2
j + x(1− x)k2 (2.6)

and
1

Λ2
eff

=
1

Λ2
UV

+ k̃2. (2.7)

We will neglect the gauge non-invariant terms in the following. They can be treated and

eliminated by using modified Ward-Takahashi identities [23 – 25].

The employed regularisation cuts off the modes p & ΛUV in the loop integral in a

smooth way. Of course there are lots of different possibilities to do this. Since universality

does not hold, different regularisations will, in principle, lead to different results. However,

as long as we leave the qualitative feature “all momenta p & ΛUV are cut off” holds, we

expect that the qualitative results we obtain remain true. For some details on other choices

for the implementation of the cutoff, see appendix A.

Let us first concentrate on Π1, i.e. the running gauge coupling, and for the moment

eliminate Π2 by considering a theory with unbroken supersymmetry.

In figure 1, we plot the running gauge coupling for various values of the cutoff ΛUV.

As expected the running stops at the UV scale ΛUV. In an ordinary commutative theory

we would expect no further changes. Here, however, we observe that the running stops,

again, at an infrared scale ΛIR ∼ M2
NC/ΛUV. The running for k < ΛIR vanishes up to

threshold effects and is therefore essentially the same as that of a pure commutative U(1)

gauge theory (recalling that the β function of a pure commutative U(1) gauge theory

vanishes). It is easy to check that a similar picture holds also for a more general matter

content. Stated differently, only in the range ΛIR < k < ΛUV do we observe a truly

noncommutative behavior of the running gauge coupling. Outside this range the behavior

is strongly affected by the presence of the UV cutoff.

– 6 –
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Figure 1: Running gauge coupling for a massless supersymmetric pure U(1) gauge theory. The

red, blue and black lines (bottom to top) are for ΛUV = 1000MNC, 105MNC, ∞MNC, respectively.

We have fixed the maximal gauge coupling to be g2
max = 4. One can clearly see that for finite values

of the cutoff the running stops at ∼ ΛUV in the UV and at ΛIR ∼M2
NC/ΛUV in the IR.

So far we have rather sloppily been using the scale M 2
NC. Let us now give a more

precise definition,

|k̃| = M−2
NC |k|, (2.8)

where MNC is the noncommutativity mass-scale. Heuristically, M−2
NC ∼ |θ| but it may

depend on the direction. E.g., for θµν in the canonical basis,

θµν =




0 θ1 0 0

−θ1 0 0 0

0 0 0 θ2

0 0 −θ2 0


 , (2.9)

only when θ1 ' θ2 does one have M−2
NC = |θ|. Otherwise the scale MNC depends on kµ,

M−2
NC =

|θµνkν |
|k| = |θ2|

√
1 +

θ2
1 − θ2

2

θ2
2

k2
0 + k2

1

k2
. (2.10)

If for example one of the θi = 0 one can have a situation where MNC → ∞. In

general the truly noncommutative region ΛIR < k < ΛUV will depend on the direction

in momentum space. This is depicted in figure 2. While we have truly noncommutative

behavior inside we have cutoff dominated nearly commutative behavior outside this region.

The crucial question is now in which region we perform experiments. If the noncommu-

tativity scale is low and the cutoff sufficiently high, say MNC ∼ few TeV, ΛUV ∼ 1018 GeV

we would live in the fully noncommutative region (shaded area in figure 2). However, this

has already been excluded for a four dimensional theory [6]. If we consider high scales for

MNC, say MNC ∼ (10−3 − 1)MP, we find (using ΛUV = MP)

ΛIR ∼ (10−6 − 1)MP À kmax ∼ 1 TeV, (2.11)

– 7 –
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Figure 2: Depiction of the regions where the model behaves like a fully noncommutative theory

(grey shaded area) and where the theory behaves more or less like the commutative theory (white).

The green (left) line gives ΛIR, blue (middle) MNC and red (right) ΛUV. In the left panel we have

used |k̃| = |k|θ0 cos(α), θ0 = 1010/Λ2
UV. In the right panel we use α = arctan(10ξ − 1) to show

that the lines for ΛIR and ΛUV intersect. The different grey shades also depict the deviation of

1/g2 from the UV value 1/g2
0 (lighter colors less deviation). This shows that in the IR and in the

commutative directions (α close to π/2) the coupling is given by the UV value. For a more general

matter content the coupling will attain (up to threshold corrections) the same value as a purely

commutative theory.

which is much bigger than the highest momentum transfer kmax that has been reached in

experiments so far. Therefore, with sufficiently high scale noncommutativity we expect to

live in the nearly commutative region (white areas in figure 2) where the gauge coupling

behaves like that of a commutative theory. Nevertheless, we will see in the next section

that even in this region Π2 leads to some possibly observable remnant effects. One final

remark concerning figure 2 is that the deep IR and the far UV are continuously connected.

In this sense the UV and the deep IR are all part of the “UV phase”.

3. Vacuum birefringence - a remnant effect from high scale noncommuta-

tivity

Let us now turn to the Π2 part of the polarisation tensor. It, too, is affected by the presence

of a finite UV cutoff. From eq. (2.5) we can easily see that it vanishes for a supersymmetric

theory since ∑

j

αjd(j) = 0 (3.1)

for supersymmetric theories. When supersymmetry is softly broken5 we can easily derive

5Meaning that numbers of bosonic and fermionic degrees of freedom of the theory still match.
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the following approximate expressions (for some additional details see appendix A),

Π2=D∆M2
SUSY, for

M2
NC

ΛUV
¿ k ¿ ∆MSUSY, (3.2)

Π2=D′∆M2
SUSYΛ2

UVk̃
2, for k ¿ M2

NC

ΛUV
, m2

j ¿ Λ2
UV,

where D,D′ are known constants and

∆M2
SUSY =

1

2

∑

b

M2
b −

∑

f

M2
f (3.3)

is the (super-)trace of the mass matrix. Following the arguments given in [6] we can now

solve the equations of motion for the photon,

Πµν(k)Aν(k) = 0. (3.4)

For concreteness, we now specify the noncommutativity,

θ13 = −θ31 = θ :=
1

M2
NC

, (3.5)

and all other components of θµν vanishing (in the 3-direction, this use of MNC coincides

with our direction dependent definition (2.8)). The photon flies in the three direction,

kµ = (k0, 0, 0, k3). (3.6)

Due to gauge invariance, only the two transverse polarisations are physical. They have the

polarisation vectors

Aµ1 = (0, 1, 0, 0), Aµ2 = (0, 0, 1, 0). (3.7)

Inserting into eq. (3.4) we find

(Π1k
2 −Π2)Aµ1 =0, (3.8)

Π1k
2Aµ2 =0.

The photon polarized along Aµ2 obviously behaves like an ordinary massless photon. How-

ever, in the Aµ1 direction we observe new and interesting effects. To study these in more

detail let us now insert the approximate expressions (3.2). For the Aµ
1 polarisation we

obtain the following dispersion relations,

k2 −D∆M2
SUSY

Π1
= 0, for ΛIR =

M2
NC

ΛUV
¿ k ¿ ∆MSUSY, (3.9)

k2 +D′
1

Π1

∆M2
SUSYΛ2

UV

M4
NC

(k3)2 = 0, for k ¿ M2
NC

ΛUV
= ΛIR. (3.10)

Equation (3.9) yields a Lorentz symmetry violating mass term of the order of ∆M 2
SUSY

that was already discussed in detail in [6]. Without cutoff, i.e. in the limit ΛUV → ∞,

this mass term persists down to k → 0, thereby excluding any chance that this can be

– 9 –
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the photon observed in nature. In presence of the cutoff, eq. (3.9) is only applicable

for k À ΛIR. Masslessness of the photon is well tested up to at least 1 GeV. Using

MP ∼ ΛUV = 1018 GeV, this gives us a conservative lower bound of MNC > 109 GeV.

Nevertheless, this opens a rather large window of opportunity compared to the ΛUV →∞
case where all MNC < MP are excluded.

For small photon momentum, eq. (3.10) applies (recall from our discussion at the end

of section 2 that we actually expect to live in this limit). To understand (3.10) better, let

us restore the light speed c in our equations and use k0 = ω for the frequency of the wave,

ω2 − c2
(

1

1 + ∆n

)2

(k3)2 = 0, (3.11)

with

∆n ≈ D′

2

1

Π1

∆M2
SUSYΛ2

UV

M4
NC

(3.12)

= 10−34

(
D′/2Π1

10−4

)(
∆MSUSY

103 GeV

)2( ΛUV

1018 GeV

)2( MNC

1018 GeV

)−4

¿ 1.

Here, we have combined the regularisation dependent loop factor D ′ = O(1/4π2) and the

field content dependent factor Π1 = O(10 − 100) to parameterise the model dependence.

From eq. (3.11) we can see that the photon Aµ1 propagates with a speed6 ≈ c(1−∆n).

Since the Aµ1 photon propagates with c we observe birefringence, i.e. different polarisations

propagate with different speed.

Although ∆n seems to be quite small we should compare this to the current experimen-

tal sensitivity. In ref. [26], a study of all possible dimension four Lorentz violating operators

in electrodynamics was conducted and constraints derived. The most general dimensions

four Lagrangian which is gauge and CPT invariant, but violates Lorentz symmetry is,

Lgeneral = −1

4
F µνFµν −

1

4
(kF )µναβF

µνFαβ . (3.13)

Comparing the propagator derived from eq. (3.13) with eq. (2.1) we find

(kF )µναβ =
D′

2

1

Π1
∆M2

SUSYΛ2
UVθµνθαβ. (3.14)

In ref. [26], the coefficients of kF have been constrained using various methods. For labo-

ratory measurements, their estimate translates to

|∆nlab| . 10−14 − 10−10, (3.15)

depending on the pattern of the noncommutativity. Astrophysical observations already

provide a much tighter bound of

|∆nastro| . 10−16, (3.16)

6Note that ∆n < 0 is not inconsistent. Since Lorentz symmetry is explicitly broken, propagation with

speeds > c is, in principle, possible.
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Figure 3: Bounds on the scale of noncommutativity MNC in a four dimensional noncommutative

theory with an ultimate UV cutoff ΛUV. The red area is excluded by the requirement that MNC <

ΛUV. The other curves show lower limits on MNC derived via eq. (3.12) from bounds on vacuum

birefringence. The grey band corresponds to estimates from lab measurements. The blue (lower)

and black (upper) thick solid curves originate from observations at astrophysical and cosmological

distances, respectively. The thick dashed line gives the most recent constraint from polarisation

measurements of gamma ray bursts [28]. We used D′/2Π1 = 10−4.

while the strongest constraints come from observations of objects at cosmological distances

(see also [27, 28]),

|∆ncosmo| . 10−37 − 10−32. (3.17)

In figure 3, we show the lower limits on MNC originating from these experimental and

observational upper limits on the birefringence of the vacuum.

4. Cutoffs as a mimic of UV physics

After having found that an ultimate UV cutoff leads to interesting physics in noncommu-

tative gauge theories, let us now discuss why such a cutoff provides a good approximation

to the effect of UV completion. As we stated in the Introduction, our evidence for this

comes from the understanding one gains from the string theory theory realisation of non-

commutativity.

In order to appreciate what happens in string theory, consider what would happen in

a more general field theory containing a tower of massive modes of mass mi. In Euclidean

space, the typical one loop diagrams would have a sum over the modes as follows

I(θ, k,ΛUV) =
∑

i

∫
d4p

(2π)4

1

(p2 +m2
i )((p+ k)2 +m2

i )
exp(ik̃ · p). (4.1)

Again we will go to the Schwinger parameterisation. Using the identity

1

A1A2
=

∫ 1

0
dx

∫ ∞

0
dt t e−t(xA1+(1−x)A2), (4.2)
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we may recast (4.1) as

I(θ, k,mi) =

∫ ∞

0
dt t e−

k̃2

4t

∑

i

∫
d4p

(2π)4

∫ 1

0
dx e−t(p

2+k2x(1−x)+m2
i ), (4.3)

where we used k · k̃ = 0. Very heuristically, the way string theory works as a finite UV

completion is to arrange the masses mi so that the integrand resums into functions with

modular properties that render the integral finite. The additional modes that are required

to do this have masses of order the string scale, i.e. the typical masses of the lowest lying

extra modes is order Ms; we call them UV modes.7

More generally, we can consider the class of theories where the UV completion yields

a one-loop contribution of the form

I(θ, k,ΛUV) =

∫ ∞

0
dT T f

(
k̃2Λ2

UV

4T

)
Z

(
T,

k

ΛUV

)
, (4.4)

where we have rescaled to a dimensionless Schwinger parameter, t = T/Λ2
UV. The function

f contains all the effects of noncommutativity, whereas Z would also be present in a

commutative theory. Since the commutative theory should be finite, too, Z implements

the UV finiteness of the integral. This property is typically provided by the sum over

an appropriate spectrum of massive modes as indicated by the sum in eq. (4.3). It is

this connection which imbues ΛUV with a physical meaning as the scale at which the UV

completion modifies the integrand. Roughly, it corresponds to the typical mass of the

lightest UV modes mi. How this works in a string theoretical setting with a non-zero

B-field has been shown in ref. [22]. There, the role of ΛUV is played by 1/
√
α′, with the

string tension α′. Moreover, in that case the form of the function f is indeed given by

f = e−
k̃2Λ2

UV
4T , (4.5)

for all T (cf. eq. (4.3)). In general, we expect this simple form only for small loop-momenta

¿ ΛUV, corresponding to T À 1,

lim
TÀ1

f = e−
k̃2Λ2

UV
4T . (4.6)

A crucial determinant of the behaviour is the interplay between f and Z. In order to

describe this further, we will define two properties of the UV complete theory that we will

consider to be necessary:

• All couplings in the k → 0 limit tend to the couplings of the θ = 0 theory.

• All physics in the θ→ 0 limit tends continuously to θ = 0 physics.

7Actually the question of finiteness in the string theory is quite subtle in this context. It relies on

consistency conditions, namely tadpole cancellation. For more details see ref. [22].
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These we will take to be fundamental properties of a consistent UV completion and are

certainly true for both string theory and the field theory with a cutoff. As stated in the

introduction, the non-zero B field is a mild background field that we can dial continuously

to zero; it would be very odd for there to be any sort of discontinuity at B = 0. At least

the second of these assumptions is known to be false in noncommutative field theory, but

then of course that theory does not provide a finite UV completion. Both properties are

obviously true for the one-loop contribution above if the integral is finite and uniformly

convergent, and if the function f is continuous.

Given these assumptions it is clear that the behaviour of the theory is essentially

determined by whether it is the function f or Z which is doing the regulating of the

integral. If the regularisation is controlled by Z, then the behaviour must by continuity

be identical to the commutative string theory. However as we shall see more thoroughly

at the end of this section, for momenta in the intermediate range ΛIR < k < ΛUV, the

integral is regulated by f . This leads to the field theoretical behaviour where the integral

is effectively regulated by the noncommutativity (cf. section 2).

To examine the question of continuity further, it is instructive to consider taking the

θ → 0 limit by scaling θ → λθ. The only place θ appears is in f ; we may redefine

ΛUV →
√
λΛUV and k →

√
λk. The net result is

I(λθ, k,ΛUV) = I(θ,
√
λk,
√
λΛUV) . (4.7)

This equation looks a bit peculiar but on inspection it makes sense: it says that the effect

of taking the commutative limit is the same as lowering the mass scales of all the modes

of the UV completion to zero and leaving θ untouched. In other words, on the right hand

side the threshold effects of an increasing number of the additional UV modes are included

whilst k̃ · p ¿ 1, and in the limit the one-loop correction to the gauge coupling includes

all the same contributions as the commutative theory, thus proving the second property

for gauge couplings, namely that as θ → 0 they tend to the commutative ones. Note that

this last statement is only true because of the assumed convergence of the integral in a UV

finite theory.

However the second property we are demanding of our theory is actually a stronger

requirement than this; noncommutativity introduces new operators where momenta are

contracted with θ’s, and the second property says that they tend to zero in the IR. This

is especially surprising given that in noncommutative field theory the very same operators

are divergent in the IR. A typical operator is precisely the contribution to the vacuum

polarisation tensor of the trace-U(1) photon,

Πµν ⊃ Π2(k2, k̃2)
k̃µk̃ν

k̃2
. (4.8)

Π2 has dimensions of mass2, and in a generic non-supersymmetric field theory (with no

matching between numbers of bosonic and fermionic degrees of freedom) Π2 ∼ 1/k̃2 [16, 17].

In the UV complete theory, this contribution is of the general form

Πµν ⊃ k̃µk̃νJ(θ, k,mi) = k̃µk̃νΛ4
UV

∫ ∞

0
dT T g

(
k̃2Λ2

UV

4T

)
Z

(
T,

k

ΛUV

)
, (4.9)
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where g is a function with the same properties as f . Importantly, continuity removes the

possibility that it could have any divergences in k̃2, and insists that in the limit k → 0 the

integral J converges to the value in the “commutative theory” which is of order unity. In

the deep IR, therefore, we must have

Π2 ∼ k̃2Λ4
UV, (4.10)

rather than any sort of divergence. In presence of softly broken SUSY, the Λ4
UV is softened

to ∆M2
SUSYΛ2

UV (cf. eq. (3.2)).

At what momentum scale does this behaviour take over from the usual noncommutative

field theory behaviour? The extra UV modes can only contribute in the integral when

T < 1. Outside this region, contributions from the UV modes in the Schwinger integral

are exponentially suppressed, and the one loop contributions are approximately those of

the UV divergent field theory. Here, in the diagrams sensitive to the noncommutativity,

the UV divergence is tamed by the functions f , g, which act as a cutoff for modes with

T < 4k̃2Λ2
UV. When the second inequality saturates the first, that is when

k̃2 >
1

4Λ2
UV

, i.e. k2 >
M4

NC

4Λ2
UV

∼ Λ2
IR, (4.11)

we never get contributions from UV modes in the integral and the behaviour is entirely

field theoretical. On the other hand when k̃2 is less than this value, there is a region

4k̃2Λ2
UV < T < 1 where the UV modes are contributing significantly. In this regime,

the integration tends to the values that we deduced from the convergence and continuity

properties of the UV completion and approaches a finite value as k → 0. Thus we can

define a “deep-IR” region,

|k| < ΛIR =
M2

NC

ΛUV
, (4.12)

in which one-loop integrals give approximately constant contributions, and Wilsonian be-

haviour is restored.

All of these properties are true for string theory, and by inspection, they are mimicked

by the introduction of a cutoff in the Schwinger integral, thus justifying the approach that

we have taken in the previous sections.

5. Conclusions

Noncommutative gauge theories are not universal. Therefore, any discussion of low energy

effects requires the specification of the ultraviolet sector. In this work we considered a

noncommutative field theory model where the fluctuations with momenta larger than an

ultraviolet cutoff ΛUV give an overall vanishing contribution. We argued that this is a good

approximation to a large class of more fundamental UV finite theories, which includes string

theory.

The presence of an ultraviolet cutoff ΛUV induces an effective infrared scale ΛIR ∼
M2

NC/ΛUV below which the running coupling behaves up to threshold corrections like that
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of a commutative gauge theory8. Only in the range ΛIR < k < ΛUV do we observe full

noncommutative behavior. However, for large noncommutativity scales MNC & 1011 GeV

and a cutoff ΛUV ∼ MP one easily finds that all known experiments are performed in the

nearly commutative region k < ΛIR.

If supersymmetry is broken, an additional Lorentz symmetry violating structure is

present in the polarisation tensor. For scales k > ΛIR it leads to a mass term for the

gauge boson in accord with refs. [6, 5]. However, below ΛIR the mass term turns into a

modification of the phase velocity of plane wave solutions, leading to birefringence. If the

trace-U(1) gauge boson is to be interpreted as (part of) the photon, a mass is not acceptable

and birefringence must be smaller than the experimental limits. Using the most stringent

limits from cosmological observations one obtains a rather strong limit of MNC & 0.1MP.

If we use the more conservative astrophysical or laboratory limits the same argument

yields only MNC & (10−7 − 10−5) MP. In this setting high precision measurements of the

properties of light are a wonderful tool to test (nearly) Planck scale physics.
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A. Low energy Π2 for general regulators

The effects discussed in this paper originate from the introduction of a UV cutoff ΛUV. Let

us now check that the qualitative behavior is independent of the specific implementation

of the cutoff, i.e. the choice of the function that suppresses fluctuations with k & ΛUV. In

particular, let us check that the form given in (3.2) is generic for k ¿ ΛIR.

Since the first term in (2.3) does not contain θ it is obvious that only the second term

can contribute to Π2. Similarly the term in the second line of eq. (2.4) can only contribute

at order O(k2k̃2). Collecting the remaining terms of eq. (2.4) which are ∝ k̃µk̃ν one finds,

Π2 = −2k̃2
∑

j

αjd(j)

∫
d4q

(2π)4

[
q2

Pj(q)
− 2

d

q4

P 2
j (q)

]
(A.1)

where Pj(q) is the inverse propagator of the particle j. (In absence of a cutoff, Pj(q) =

q2 + m2
j .) In presence of any reasonable UV cutoff that acts for all particles identically

(which, in particular, respects SUSY) one obtains,9

∫
d4q

(2π)4

[
q2

Pj(q)
− 2

d

q4

P 2
j (q)

]
= Λ4

UVf

(
m2
j

Λ2
UV

)
. (A.2)

8This is in stark contrast to a situation where the noncommutative gauge theory is assumed to be

valid at all scales and no ultraviolet cutoff exists. There ΛIR = 0 and the theory shows strong effects of

noncommutativity at all scales. In such a situation a noncommutative U(1) can never be the photon as

demonstrated in [6, 5].
9A large class of different cutoff functions can be implemented by using ERGE scheme regularisation

(see, e.g., appendix C of [29]).
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As long as
∑

j

αjd(j)f

(
m2
j

Λ2
UV

)
6= 0, (A.3)

we will observe a birefringence effect as discussed in section 3. For m2
j ¿ Λ2

UV, we can

further expand,

f

(
m2
j

Λ2
UV

)
= A+B

m2
j

Λ2
UV

+ · · · . (A.4)

Remembering that
∑

j αjd(j) = 0 we find

Π2 ∼ k̃2B∆M2
SUSYΛ2

UV, (A.5)

as in (3.2). We have checked for several regulators that B 6= 0. However, let us remark

that B depends on the choice of the regulator.
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